N2O production by fungal denitrification in a semiarid soil
نویسندگان
چکیده
منابع مشابه
N2O production by heterotrophic N transformations in a semiarid soil
Emissions of N2O from soils of the Southwestern US are thought to result from the activity of anaerobic denitrifying bacteria, but the seasonal dryness and sandy texture of these soils are more conducive to the activities of aerobic microbes. Here, we present incubations of semiarid soils with added compounds known to stimulate the N-cycling processes ammonification (proteins, oligopeptides, an...
متن کاملDetection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils.
UNLABELLED Members of the Fungi convert nitrate (NO3 (-)) and nitrite (NO2 (-)) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi a...
متن کاملNovel P450nor Gene Detection Assay Used To Characterize the Prevalence and Diversity of Soil Fungal Denitrifiers.
UNLABELLED Denitrifying fungi produce nitrous oxide (N2O), a potent greenhouse gas, as they generally lack the ability to convert N2O to dinitrogen. Contrary to the case for bacterial denitrifiers, the prevalence and diversity of denitrifying fungi found in the environment are not well characterized. In this study, denitrifying fungi were isolated from various soil ecosystems, and novel PCR pri...
متن کاملImpacts of grazing intensity on denitrification and N2O production in a semi-arid grassland ecosystem
N2O production from denitrification in soils contributes to the enhanced greenhouse effect and the destruction of the stratospheric ozone. Ungulate grazing affects denitrification and the production of N2O. The short-term effect of grazing on denitrification and N2O production has been examined in several grassland ecosystems. However, the effects of long-term grazing have rarely been studied. ...
متن کاملMoisture Controls on Trace Gas Fluxes in Semiarid Riparian Soils
Variability in seasonal soil moisture (SM) and temperature (T) can alter ecosystem/atmosphere exchange of the trace gases carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). This study reports the impact of year-round SM status on trace gas fluxes in three semiarid vegetation zones, mesquite (30 g organic C kg soil), open/ forb (6 g organic C kg soil), and sacaton (18 g organic C kg s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008